Mapping Floating Aquatic Vegetation (Kelp) with Imaging Spectroscopy at Spatial Scales from 4 to 60 m using Linear Spectral Mixture Modeling

Phil Dennison

Utah Remote Sensing Applications Lab, University of Utah

Kyle Cavanaugh and Dave Siegel

Institute for Computational Earth System Science, Univ. of California Santa Barbara

Rob Green, NASA JPL

Mapping Floating Aquatic Vegetation using HyspIRI?

- The HyspIRI VSWIR sensor will likely have a 60 m spatial resolution
- This is a relatively coarse spatial resolution for mapping floating aquatic vegetation
- Reference data, airborne remote sensing and spaceborne remote sensing span a wide range of spatial resolutions
- We need to investigate methods for mapping FAV that will work well across this range of spatial resolutions

Giant Kelp (Macrocystis pyrifera)

- Found on shallow sub-tidal temperate reefs throughout the world
- Very high productivity §
- High economic and ecological importance

Santa Barbara Coastal LTER

- Long Term Ecological Research site founded in 2000 to investigate ecological processes of giant kelp forests
- AVIRIS data
 - Acquired August 12, 2007
 - 4.3 m spatial resolution (Twin Otter)
 - Can be resampled to coarser spatial resolutions

SBC LTER

Santa Barbara Coastal LTER AVIRIS Data

Methods

- Linear spectral mixture analysis
 - Models image spectra as a combination of two or more endmembers

 Is kelp fraction modeled by linear spectral mixture analysis consistent over a wide range of spatial scales?

Kelp Fraction Modeling Methodology

Endmember Selection

- Kelp endmember candidate endmembers

 25 high NDVI and/or high NIR reflectance
 pixels selected at 4.3 m spatial resolution
- Dark water candidate endmembers
 - 15 low albedo pixels selected at 4.3 m resolution
- A "training" spectral library was constructed using transects across several areas of varying kelp cover (312 spectra total)

Endmember Selection

Selected Endmembers

Kelp Fraction Modeling

- Kelp and Dark Water endmembers were used to model images at all spatial resolutions
- Two thresholds were used to screen out non-water/non-kelp pixels
 - 1% SWIR reflectance threshold
 - 0.5% RMSE threshold (indicates poor model fit)

Kelp Fraction Scaling Comparison

- 4.3 m kelp fraction can be averaged up to 60.2 m spatial resolution
- The scaled 4.3 m kelp fraction can then be compared against 60.2 m kelp fraction

Scaling Comparison

• At 60.2 m spatial resolution, 41472 pixels were modeled with a kelp fraction

Kelp Fraction Difference (60.2 m vs. scaled 4.3 m)	% of All Pixels w/ Kelp Fraction
<10%	99.99%
<5%	99.93%
<3%	99.77%
<1%	99.22%

 However, these percentages are inflated by a large number of open water pixels that do not contain kelp

Scaling Comparison

• 903 60.2 m pixels were modeled with a kelp fraction greater than 5%

Kelp Fraction <u>Difference</u>	% of All Pixels w/ Kelp Fraction > 5%
< 10%	99.67%
< 5%	97.12%
< 3%	92.47%
< 1%	82.50%

Total Kelp Area

0.42 • We used the 5% 0.41 kelp fraction Total Kelp Area (km²) threshold to 0.4 calculate total kelp 0.39 area Total kelp area 0.38 decreases by 12% 0.37 as spatial resolution goes 0.36 from 4.3 to 60.2 m 40 0 20 60

Spatial Resolution (m)

Conclusions

- Kelp fraction scales well from 4 m to 60 m spatial resolution
 - Good agreement of kelp fraction modeled at different spatial resolutions
 - Scaling up does result in lower estimate of total kelp area
- 60 m HyspIRI VSWIR data will likely be useful for FAV mapping
 - More investigation of appropriate scaling techniques is needed

Directions for Future Research

- Comparison of kelp fraction with LTER kelp frond density survey data
- Actual simulation of HyspIRI VSWIR spatial/spectral properties
- Masking spectral anomalies (e.g. mixed pixels containing boats)
- The two-endmember model is probably too simple
 - Doesn't account for variable plankton or sediment concentrations in water
 - Doesn't account for water depth
 - Doesn't account for sun glint

<u>Very Preliminary</u> Comparison of Kelp Fraction and Frond Density

- Annual LTER kelp transects from July 2007 were compared with 4.3 m kelp fraction
- Spatial and temporal issues
 - 1 or 2 m wide transects
 vs. 4 m AVIRIS
 - Not yet confident of locations of transects in AVIRIS data
 - July vs. August timing

